Search results for "plastic electronics"

showing 6 items of 6 documents

Towards Plastic Electronics: Patterning Semiconducting Polymers by Nanoimprint Lithography

2002

The direct patterning of functional semiconducting polymers (see Figure) has been achieved with a nanoimprint lithography technique. The room‐temperature process described is time‐saving as repeated temperature cycling is not required. In addition, due to the direct patterning approach the need for further processing steps (plasma treatment) to pattern the underlying semiconducting material is eliminated.

chemistry.chemical_classificationMaterials sciencebusiness.industryMechanical EngineeringNanotechnologyPolymerNanoimprint lithographylaw.inventionchemistryMechanics of MaterialslawOptoelectronicsGeneral Materials SciencebusinessPlastic electronicsAdvanced Materials
researchProduct

Solution processes for plastic thin film transistors

2009

plastic electronics nanotechnology thin film transistorsSettore CHIM/02 - Chimica Fisica
researchProduct

Polymeric Thin Films for Organic Electronics: Properties and Adaptive Structures

2013

This review deals with the correlation between morphology, structure and performance of organic electronic devices including thin film transistors and solar cells. In particular, we report on solution processed devices going into the role of the 3D supramolecular organization in determining their electronic properties. A selection of case studies from recent literature are reviewed, relying on solution methods for organic thin-film deposition which allow fine control of the supramolecular aggregation of polymers confined at surfaces in nanoscopic layers. A special focus is given to issues exploiting morphological structures stemming from the intrinsic polymeric dynamic adaptation under non-…

Materials scienceSupramolecular chemistryNanotechnologyReviewlcsh:Technologysolution processeslaw.inventionelectronic devices solution processes polymers thin filmslawmorphologyGeneral Materials ScienceElectronicsThin filmlcsh:MicroscopyNanoscopic scaleplastic electronicslcsh:QC120-168.85chemistry.chemical_classificationOrganic electronicslcsh:QH201-278.5lcsh:TTransistorPolymerchemistrythin filmsThin-film transistorlcsh:TA1-2040solar cellslcsh:Descriptive and experimental mechanicstransistorslcsh:Electrical engineering. Electronics. Nuclear engineeringlcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971Materials
researchProduct

Tantalum nitride thin film resistors by low temperature reactive sputtering for plastic electronics

2008

This article describes the fabrication and characterisation of tantalum nitride (TaN) thin film for applications in plastic electronics. Thin films of comparable thickness (50-60 nm) have been deposited by RF-magnetron-reactive sputtering at low temperature (100 °C) and their structure and physical (electrical and mechanical) properties have been correlated by using sheet resistance, stress measurements, atomic force microscopy (AFM), XPS, and SIMS. Different film compositions have been obtained by varying the argon to nitrogen flow ratio in the sputtering chamber. XPS showed that 5:1, 2:1 and 1:1 Ar:N 2 ratios gives Ta 2 N, TaN and Ta 3 N 5 phases, respectively. Sheet resistance revealed a…

Materials sciencetantalum nitrideAnalytical chemistryTantalumchemistry.chemical_elementSurfaces and InterfacesGeneral ChemistryCondensed Matter PhysicsGrain sizeSurfaces Coatings and Filmschemistry.chemical_compoundTantalum nitridechemistryX-ray photoelectron spectroscopyElectrical resistivity and conductivitySputteringXPSMaterials ChemistryAFMThin filmplastic electronicsSIMSSheet resistanceplastic electronics tantalum nitride XPS AFMSIMSSurface and Interface Analysis
researchProduct

On the achievement of high performance organic thin film transistors by solution processes

2010

transistors plastic electronics printing electronicsSettore CHIM/02 - Chimica Fisica
researchProduct

MATERIALS AND PROCESSING ISSUES FOR THE MANUFACTURING OF INTEGRATED PASSIVE AND ACTIVE DEVICES ON FLEXIBLE SUBSTRATES

2008

Plast_ICs is a Public/Private Laboratory funded by Italian Government aimed to build a novel technological platform for the development of flexible electronics, mainly, but not solely, based on thin inorganic films. Integration of different functions, on single and/or multiple plastic foils, to generate a smart system is the final goal of the project. The building blocks of the platform will be presented, starting from the different plastic substrates characterization, going through the development of active devices, such as thin-film- transistors, and passive devices, like thin-film- resistors, capacitors, inductors. Fully inorganic elementary devices, based on optical patterning and in va…

Materials scienceDEVICES FLEXIBLE ELECTRONICS PLASTIC ELECTRONICSTransistorComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONEngineering physicsFlexible electronicslaw.inventionCharacterization (materials science)CapacitorThin-film transistorlawElectronic engineeringThin filmPhotolithographyResistorSettore CHIM/02 - Chimica Fisica
researchProduct